SYNTHESIS of RP-67,580, a NEW POTENT NONPEPTIDE SUBSTANCE P ANTAGONIST

Jean-François Peyronel*, Alain Truchon, Claude Moutonnier and Claude Garret.

Medicinal Chemistry Department, Rhône-Poulenc-Rorer Central Research, Centre de Recherches de Vitry-Alfortville, 13 Quai J. Guesde, B.P. 14, 94403 VITRY sur SEINE, FRANCE

(Received 10 September 1991)

Abstract: The synthesis of enantiomerically pure RP-67,580, a novel nonpeptide Substance P receptor antagonist, is described as well as the resolution of intermediate perhydroisoindolone.

The undecapeptide Substance P (SP), belongs to a family of chemically related peptides the neurokinines (NK), sharing a common C-terminal aminoacid sequence. Widely distributed in the central and peripheral nervous system, SP is considered to function as a neurotransmitter or neuromodulator. It is involved in numerous physiological activities such as pain transmission, vasodilatation, plasmatic extravasation, smooth muscle contraction ¹. Thus, SP antagonists are highly desirable for the elucidation of its physiological and pathological functions. When we initiated a binding screen for potential NK antagonists, only peptidic antagonists of low activity and specificity were known ². The recent disclosure by Pfizer investigators of the aminoquinuclidine CP-96,345 ³ prompts us to present our results with another class of potent nonpeptide SP antagonists.

As part of a prospective chemistry research programme, we synthesized series of substituted or fused pyrrolidines, using azomethine ylids 1,3-dipolar cycloaddition methodology. One of the series, perhydroisoindolones 1, was obtained by cycloaddition to cyclohexenones (scheme 1). When properly substituted,

$$\begin{array}{c|c} R & & \\ \hline \\ CH_{2^{-}} \\ \hline \\ CH_{2^{-}} \\ \hline \\ \end{array}$$

Scheme 1.: Perhydroisoindolone synthesis by 1,3-dipolar cycloaddition of azomethine ylids on cyclohexenones

these structures revealed interesting activity in [³H]SP binding assays, with EC₅₀ in the micromolar range. Optimization of this activity led to a new family of potent, nonpeptidic SP antagonists. RP-67,580, (-)-7,7-diphenyl-2-[1-imino-2-(2-methoxy-phenyl)-ethyl]-perhydroisoindol-4-one **2**, was selected for extensive studies in order to establish the biological properties of these compounds. It is a potent SP

antagonist, both in vitro and in vivo and acts specifically and competitively on NK₁ receptors. In [3 H]SP binding assay in rat brain membranes its K_i is 4.16 nM and in guinea pig ileum preparation, RP 67,580 inhibits the contractile effects of SP (pA₂ = 7.2) 4 .

In this paper we describe the synthesis and resolution of RP-67,580. X-ray crystallographic data relative to absolute configuration determination are reported separately ⁵, as well as biological and pharmacological studies ⁴.

RP-67,580 and its analogues were prepared according to the route shown in scheme 2 6 . Reaction of 4,4-diphenylcyclohex-2-enone 3 7 , with N-methoxymethyl-N-trimethylsilylbenzylamine 4 8 , under the conditions reported by Achiwa (1 % CF₃CO₂H in CH₂Cl₂, 1h / 25°C) 9 , gave 2-benzyl-7,7-diphenyl-2-perhydroisoindol-4-one 5 in 80 % yield 10 . Removal of benzyl group was effected by palladium catalysed hydrogenolysis (1 atm., 10 % Pd/C, in ethanol in the presence of hydrochloric acid) yielding 7,7-diphenyl-2-perhydroisoindol-4-one as its hydrochloride (±)-6 11 . The aminoketone could be resolved by crystallization of its salt with (S)-mandelic acid. Crude mixture of diastereoisomeric salts (obtained from equimolar amounts of components in EtOAc) was boiled in water and the insoluble salt filtered and recrystallized from acetonitrile/water mixture (2/1) to give levorotatory (S)-mandelate (-)-7 ([α]_D²⁰ = -164°, c = 1, MeOH). This salt was converted to enantiomerically pure (-)-6, which was shown to possess 3aR,7aR absolute configuration 12 .

Amine (-)-6 was acylated with (2-methoxy-phenyl)acetic acid in the presence of N,N-carbonyl-diimidazole and triethylamine to give amide 9 in 66 % yield ¹³. Treatment of 9 with triethyloxonium tetrafluoroborate in dichloromethane led to crude alkoxyimmonium 10 which was converted to amidine RP 67,580 by action of ammonia in ethanol (20.7 % yield from 9) ¹⁴. Alternatively, when reacted with ethyl (2-methoxy-phenyl)acetimidate tetrafluoroborate (obtained from (2-methoxy-phenyl)acetamide by treatment with triethyloxonium tetrafluoroborate in dichloromethane), (-)-6 gave RP-67,580 in one step and with improved yield (53 %).

Acknowledgments: We wish to thank Alain Pinsard, Alain Chevalier, Nguyen Thi Phuong Hieu and coworkers for their technical assistance and the structural analysis department for providing the spectral and analytical data.

Reference and notes:

- 1. Pernow, B. Pharmacol. Rev., 1983, 35, 85.
- 2. Regoli, D.; Drapeau, G.; Dion, S.; Couture, R. Trends Pharmacol. Sci., 1988, 9, 290.
- 3. Snider, R.M.; Constantine, J.W.; Lowe, III J.A.; Longo, K.P.; Lebel, W.S.; Woody, H.A.; Drozda, S.E.; Desai, M.C.; Vinick, F.J.; Spencer, R.W.; Hess, H-J. Science, 1991, 251, 435.

Scheme 2: Synthesis of RP-67,580

- 4. Garret, C.; Carruette, A.; Fardin, V.; Moussaoui, S.; Peyronel, J-F.; Blanchard, J-C.; Laduron, P. *Proc. Nat. Acad. Sci.*, **1991**, *88*, (in press).
- 5. James-Surcouf, E.; Mornon, J-P. (in preparation)
- 6. European Patent Application #429,366-A.
- 7. Zimmerman, H.E.; Schuster, D.I. J. Am. Chem. Soc. 1961, 83, 4486.
- 8. Hosomi, A.; Sakata, Y.; Sakurai, H. Chem. Lett. 1984, 1117.
- 9. Terao, Y.; Kotaki, H.; Imai, N.; Achiwa, K. Chem. Pharm. Bull. 1985, 33, 896.
- 10. m.p. 132°C; ¹H-NMR (CDCl₃, 250 MHz): 1.95 (ddd, J=18, 13 and 6, 1H, H-5ax), 2.30 (m, 2H, CH₂-3), 2.45 (ddd, J=18, 6 and 2.5, 1H, H-5eq), 2,55 (dddd, J=13, 6, 2.5 and 2.5, 1H, H-6eq), 2.75 (dd, J=9 and 6, 1H, H-1), 2.90 (ddd, J=13, 13 and 6, 1H, H-6ax), 3.0 (dd, J=9 and 7, 1H, H-1), 3.20 (bddd, J=9, 9 and 9, 1H, H-7a), 3.45 and 3.65 (2d, J=13, 2x1H, CH₂Ph), 3.7 (bddd, J=9, 9 and 9, 1H, H-3a), 7.2-7.45 (m, 15H, 3 Ph).
- 11. m.p.= 270°C with decomposition; ¹H-NMR (DMSO-d₆, 250 MHz): 2.05 (bddd, J=15, 13 and 5, 1H, H-5ax), 2.30 (bddd, J=15, 2.5 and 2.5, 1H, H-5eq), 2.45 (dd, J=12 and 7, 1H, H-1), 2,7 (dd, J=12 and 12, 1H, H-1), 2.8 (bm, 2H, CH₂-6), 3.5 (bdd, J=7 and 7, 1H, H-3a), 3.35 (bdd, J=11 and 7, 1H, H-3), 3.8 (bd, J=11, 1H, H-3), 3.95 (bm, 1H, H-7a), 7.10-7.60 (m, 10H, 2 Ph), 9.45 (bs, 2H, NH₂+).
- 12. X-Ray analysis was performed on a single crystal of dextrorotatory (R)-mandelate (enantiomer of (-)-7). Considering the configuration of the chiral acid, 3aS,7aS absolute configuration was established. (see ref. (5)). This salt was converted to (+)-6, then to the inactive 3aS,7aS enantiomer of RP-67,580.
- 13. m.p. = 200°C; $[\alpha]_D^{20}$ = 274° (c=0,49 , AcOH); $^1\text{H-NMR}$ (DMSO-d₆, 250 MHz, 423°K): 2.14 (td, J=14 and 5, 1H, H-5ax), 2.30 (dt, J=14 and 3, 1H, H-5eq), 2.65-3.1 (m, 4H, CH₂-1 and CH₂-6), 3.3 (m, 1H, H-3a), 3.45 (m, 3H, H-3 and >NCOCH₂Ar), 3.74 (s, 3H, OCH₃), 3.98 (mt, 1H, H-7a), 4.27 (d, J=10, 1H, H-3), 6.8-7.7 (m, 14H, 2 Ph + Ar).
- 14. m.p. = 191°C; [α]_D²⁰ = 255° (c=1 , MeOH); ¹H-NMR (DMSO-d₆, 250 MHz, 383°K): 2.10 (ddd, J=15, 13 and 5, 1H, H-5ax), 2.30 (ddd, J=15 2.5 and 2.5, 1H, H-5eq), 2.6-3.1 (m, 4H, CH₂-1 and CH₂-6), 3.3 (bdd, J=6.5 and 6, 1H, H-3a), 3.40 (dd, J=10 and 6.5, 1H, H-3), 3.45 (s, 2H, >NCOCH₂Ar), 3.75 (s, 3H, OCH₃), 4.0 (mt, 1H, H-7a), 4.15 (d, J=10, 1H, H-3), 6.9-7.6 (m, 14H, 2 Ph + Ar), 13 (vbs, 1H, NH). IR (KBr): 3320, 3080, 3040, 3020, 2960, 2920, 2835, 1725, 1590, 1490, 1250, 1030, 755, 705.